Теплопроводность кирпичей
Теплопроводность кирпичей
Актуальность именно такого выбора подтверждается его неоспоримыми преимуществами. Среди них экологичность, морозостойкость, пожароустойчивость — и все это уже не говоря о прочности и долгой службе, которая подразумевается априори. Наряду с этим при возведении объектов важно учитывать теплопроводность кирпичной стены.
В настоящее время активно распространены несколько видов. Среди них выделяют следующие:
- белый (силикатного типа);
- (глиняный).
Подобные блоки могут быть самой различной формы и фактуры. Похожи они только своими геометрическими параметрами. На самом деле различия гораздо глубже:
- В составе керамического лежит глина и различные добавки.
- Силикатный получают из кварцевого песка, извести и воды.
Теплопроводность красного кирпича (керамического типа) имеет настоящее народное признание. И это неспроста: он встречается в самых различных интерпретациях (пусто- и полнотелый, облицовочный и имеющий интересную фактуру), но каждое из них будет уникальным и подойдет для возведения любого типа зданий.
Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности
Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.
Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.
Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.
Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.
В чем измеряется теплопроводность ее физическая сущность
Что такое теплота? Это движение молекул вещества, хаотичное в газе или жидкости, и вибрированное в кристаллических решетках твердых тел. Если металлический прут, помещенный в вакуум, подогреть с одной стороны, атомы металла, получив часть энергии, начнут вибрировать в гнездах решетки. Эта вибрация станет передаваться от атома к атому, благодаря чему энергия постепенно распределится равномерно на всю массу. У одних материалов, например, у меди, этот процесс занимает секунды, у других же на то, чтобы тепло равномерно «растеклось» по всему объему, потребуются часы. Чем выше разность температур между холодным и горячим участками, тем быстрее идет передача тепла. Кстати, процесс ускорится при увеличении площади контакта.
Коэффициент теплопроводности (х) измеряется в Вт/(м∙К). Он показывает сколько тепловой энергии в Ваттах будет передаваться через один квадратный метр при разности температур в один градус.
Теплотехнический расчёт стены
Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:
№ слоя | Слой | δ, мм | λ, Вт/(м °С) | γ, кг/м 3 |
1 | Кладка из кирпича керамического пустотного | 120 | 0.64 | 1300 |
2 | Минераловатный утеплитель | 150 | 0.039 | 60 |
3 | Кладка из кирпича керамического полнотелого | 380 | 0.81 | 1600 |
4 | Штукатурка ц.п. | 20 | 0.91 | 1800 |
Определение требуемого сопротивления теплопередаче
Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:
где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].
Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]
где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]
Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,
Определение приведённого сопротивления теплопередаче стены
где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;
Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:
δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.
Расчетное значение сопротивления теплопередаче, R:
R > Rreq — Условие выполняется
Толщина конструкции, ∑t =675 мм;
Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции
Значение выразим из формулы (5.4) СП 50.13330.2012
Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.
Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи
Схема ограждающей конструкции:
Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м
Шаг 1 геометрия
Шаг 2 Создание элементов конвекции
Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.
Шаг 3 характеристики материалов
В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.
Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);
Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.
Шаг 4 Внешняя нагрузка
Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.
Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).
Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:
Теплотехнический расчёт наружной стены здания с учётом неоднородности
Исходные данные
Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.
Определение приведённого сопротивления теплопередаче с учётом неоднородностей
Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр , (м 2 *°C)/Вт, следует определять по формуле:
где R усл — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;
где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);
Определение удельных потерь теплоты кладочной сетки
Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.
Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м
Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015
Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м
dут, мм | λ = 0,2 | λ = 0,6 | λ = 1,8 |
50 | 0,005 | 0,008 | 0,011 |
80 | 0,005 | 0,007 | 0,009 |
100 | 0,004 | 0,007 | 0,008 |
150 | 0,004 | 0,005 | 0,006 |
Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м
dут, мм | λ = 0,2 | λ = 0,6 | λ = 1,8 |
50 | 0,018 | 0,031 | 0,043 |
80 | 0,018 | 0,028 | 0,035 |
100 | 0,017 | 0,026 | 0,031 |
150 | 0,015 | 0,021 | 0,024 |
Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.
Потери теплоты по таблице Г.42:
Потери теплоты по таблице Г.43:
Итоговое значение потерь теплоты:
Суммарная протяжённость линейных неоднородностей Σlj = 2 м.
Подставив полученные значения в формулу (Е.1), получим:
Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи
Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.
Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).
Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР
Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:
Теплоемкость строительных материалов
Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.
А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.
Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.
Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.
Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.
Виды пенобетона
Легкие пенобетонные блоки подразделяются на три вида:
- теплоизоляционный (с низкой плотностью, 400 — 500 кг/м.куб), которым характерно наличие большого количества пустот — применяются для создания надежной теплоизоляции стен;
- конструкционно-теплоизоляционный (со средней плотностью, 600 — 700 кг/м.куб) — обладают хорошей теплостойкостью и несущей способностью;
- конструкционный (с высокой плотностью, 1100 — 1200 кг/м.куб и малым содержанием пустот) — применяются для возведения несущих стен, но недостаточно удерживают тепло.
Как изготавливают пенобетон читайте в этой статье.
Теплопроводность древесины. Теплотехника деревянных домов
23 ноября 2020
В любом здании внутренняя и внешняя поверхности нагреваются различно. В результате от точки большего нагрева к точке меньшего нагрева начинается поток тепла. Передача тепла в разных материалах происходит по-разному. На это влияет такое свойства материалов как теплопроводность.
В рамках строительства домов при рассмотрении вопроса теплопроводности, потери тепла, когда стены имеют ровную поверхность, условно принимают передачу тепла как прямой, а не хаотичный поток. При этом и температура рассматривается не поверхности материала, а температуры внутри помещения и снаружи.
Рассмотрим особенности теплопроводности и потери тепла в деревянных домах.
Древесина как строительный материал
Неоднократно уже указывалось в наших статьях, что строительный материал изначально, впрочем, часто и сейчас, привязывался к регионам строительства. Вполне естественно, что в России основным строительным материалом стала древесина разных пород деревьев с учетом места их произрастания.
В местах отсутствия леса, например, в степных районах, таким строительным материалом становился саман — смесь глины с соломой (именно эта идея лежит в изготовлении современного арболита). В местах выхода скалистых пород строительным материалом мог становиться натуральный камень. В первую очередь известняк, так как он легче поддавался обработке.
Но даже при наличии других строительных материалов предпочтение часто отдавалось древесине. Более того, происходит это и в настоящее время даже при условии наличия развитой транспортной сети и грузоперевозок строительных материалов.
Теплопроводность древесины
Строительство домов из дерева ведется как в отношении маленьких дачных домиков, небольших домов для постоянного проживания или загородного отдыха, так и в отношении больших коттеджей. Одним из важнейших факторов является достаточно низкая теплопроводность древесины. Сравним данные на конкретных примерах.
* Данные из СНиП II-А.7-62 Строительная теплотехника и СНиП II-3-79 Строительная теплотехника
Строительный материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*град) | Теплоемкость, Дж/(кг*град) |
Бетон на гравии или щебне из камня* | 2400 | 1,51 | 840 |
Бетон на песке | 1800..2500 | 0,7 | 710 |
Блок газобетонный | 400. 800 | 0,15. 0,3 | — |
Блок керамический поризованный | — | 0,2 | — |
Газо- и пенобетон* | 800 | 0,21 | 840 |
Известняк (облицовка)* | 1400 — 2000 | 0,49 — 0,93 | 850 — 920 |
Керамзитобетон на кварцевом песке с поризацией* | 1200 | 0,41 | 840 |
Керамзитобетон легкий | 500 — 1200 | 0,18 — 0,46 | — |
Керамзитобетон на керамзитовом песке* | 1800 | 0,66 | 840 |
Керамика теплая | — | 0,12 | — |
Кирпич красный плотный | 1700 — 2100 | 0,67 | 840 — 880 |
Кирпич красный пористый | 1500 | 0,44 | — |
Кирпич облицовочный | 1800 | 0,93 | 880 |
Кирпич силикатный | 1000 — 2200 | 0,5 — 1,3 | 750 — 840 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе* | 1800 | 0,56 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе* | 1200 — 1600 | 0,35 — 0,47 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе* | 1800 | 0,7 | 880 |
Ракушечник | 1000 — 1800 | 0,27 — 0,63 | — |
Теплопроводность и другие свойства древесины разных пород деревьев
Строительный материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*град) | Теплоемкость, Дж/(кг*град) |
Берёза | 510..770 | 0,15 | 1250 |
Дуб вдоль волокон* | 700 | 0,23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)* | 700 | 0,1 | 2300 |
Кедр | 500 — 570 | 0,095 | — |
Клён | 620 — 750 | 0,19 | — |
Липа, (15% влажности) | 320 — 650 | 0,15 | — |
Лиственница | 670 | 0,13 | — |
Пихта | 450 — 550 | 0,1 — 0,26 | 2700 |
Сосна и ель вдоль волокон* | 500 | 0,18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)* | 500 | 0,09 | 2300 |
Сосна смолистая 15% влажности | 600 — 750 | 0,15 — 0,23 | 2700 |
Тополь | 350 — 500 | 0,17 | — |
Если сравнить показатели в таблицах, то хорошо видно, что теплопроводность древесины ниже теплопроводности многих стеновых материалов. Лишь некоторые современные материалы приближаются, поэтому показатель с деревом (в таблицу не выведены данные по утеплителям, т.к. это не конструктивный материал, который будет рассмотрен в отдельной статье).
Изменение требований к теплосопротивлению ограждающих конструкций: слева R
При сравнении разных видов пород необходимо отметить, что на показатель теплопроводности древесины оказывает влияние её плотность и влажность. Плотность одной и тоже породы дерева может зависеть от места произрастания. По этой причине в таблице местами указаны несколько показателей.
Одной из самых «теплых» пород деревьев является кедр. Его коэффициент теплопроводности составляет 0,095 Вт/(м*С). Дом, построенный из кедра, будет очень хорошим вложением, так как позволит экономить на отоплении.
Ель также является хорошим решением для строительства в плане экономии на отоплении. Схожа с елью пихта, но только при условии, что нет повышенной смолистости. Именно смолистость сосны и её плотность отодвигает её на следующую позицию.
Плотность деревьев, особенно хвойных, очень зависит от места их произрастания, а это сказывается на теплопроводности. Показательным примером является именно сосна.
Так в северных районах России, например, Астраханская область, которая славится мачтовыми соснами с малой сбежестью ствола, годовой прирост у сосны не большой, древесина плотная. В Вологодской области часто предпочитают строить из ели, а не из сосны. В то же время в южной тайге сосна имеет резкий прирост летом с древесиной меньшей плотности. В результате теплопроводность такой сосны ниже, но и сбежесть больше.
В строительстве закрепилась практика применения для расчетов усредненного коэффициента теплопроводности для деревянных домов на основе средних данных по сосне, то есть 0,15 Вт/(м* 0 С). В действительности, если рассматривать сухую древесину, то коэффициент теплопроводности составит 0,11 — 0,13 для ели, пихты, сосны и лиственницы и менее 0,1 Вт/(м* 0 С) для кедра. Эти показатели сопоставимы, например, с газосиликатным блоком автоклавного производства.
Толщина стены из дерева
С учетом коэффициента теплопроводности 0,11 — 0,13 1 Вт/(м* 0 С) и сопротивления теплопередаче для средней полосы европейской части России равной 3 м2* 0 С/Вт. Таким образом, толщина стены должна равняться 0,11*3=0,33 метра или 0,13*3=0,39 метра. С учетом этих показателей и применяется усредненный вариант толщины стены для сосны 37 см. Это норма для энерго- и теплосберегающих условий.
Для нас привычно, что стена в доме ровная, плоская. Учитывая тот факт, что тепло передается благодаря хаотичному движению частиц, но в условиях плоской стены можно говорить о прямолинейной передаче тепла от зоны с высокой температурой в зону с низкой. В условиях со стеной из бруса и лафета для энергоэффективного дома потребуется толщина стены 37 см.
Но в условиях с бревном ситуация будет выглядеть иначе. Закругленная поверхность «создаст» разнонаправленные векторы передачи тепла. В результате чего за толщину стены необходимо принимать диаметр бревна, а не его половину по самому узкому месту. Зону межвенцового паза или, как еще называют, теплового моста можно рассматривать как «мостик холода» аналогично раствору в кирпичной кладке.
Иными словами, в случае строительства дома из бревна, он должен строиться из бревна диаметром 37 см.
Здесь необходимо заметить, что толщина стены это только одно из условий энергоэффективности. Существует еще и понятие допустимых к эксплуатации условий когда, например, рассматривается температура помещений не 24 0 С, а 18 — 20 0 С.
Кроме этого возможна ситуация, когда строительство энергоэффективного дома оказывается нерациональным с учетом стоимости строительство и дальнейшего ремонта, расход на которые может оказаться выше экономии на отоплении. Если же посмотреть СНиП 30-ти летней давности, то выяснится, что достаточной была толщина стены из дерева в 2 — 3 раза тоньше.
Строить дом с большей толщиной стены и меньше тратить на отоплении или построить дом дешевле, но на отоплении тратить больше — это вопрос, на который каждый должен ответить для себя лично. Проектирование дома должно вестись с учетом ответа на этот вопрос.